API Reference#
Here is the API reference for gptme
.
core#
Some of the core classes and functions in gptme
.
Message#
A message in the conversation.
- class gptme.message.Message#
A message in the assistant conversation.
- role#
The role of the message sender (system, user, or assistant).
- content#
The content of the message.
- pinned#
Whether this message should be pinned to the top of the chat, and never context-trimmed.
- hide#
Whether this message should be hidden from the chat output (but still be sent to the assistant).
- quiet#
Whether this message should be printed on execution (will still print on resume, unlike hide). This is not persisted to the log file.
- timestamp#
The timestamp of the message.
- files#
Files attached to the message, could e.g. be images for vision.
- __init__(role: ~typing.Literal['system', 'user', 'assistant'], content: str, pinned: bool = False, hide: bool = False, quiet: bool = False, timestamp: ~datetime.datetime = <factory>, files: list[~pathlib.Path] = <factory>, call_id: str | None = None) None #
- cost(model: str | None = None, output=False) float #
Get the input cost of the message in USD.
- format(oneline: bool = False, highlight: bool = False, max_length: int | None = None) str #
Format the message for display.
- Parameters:
oneline – Whether to format the message as a single line
highlight – Whether to highlight code blocks
max_length – Maximum length of the message. If None, no truncation is applied. If set, will truncate at first newline or max_length, whichever comes first.
- classmethod from_toml(toml: str) Self #
Converts a TOML string to a message.
The string can be a single [[message]].
- replace(**kwargs) Self #
Replace attributes of the message.
- to_dict(keys=None) dict #
Return a dict representation of the message, serializable to JSON.
- to_toml() str #
Converts a message to a TOML string, for easy editing by hand in editor to then be parsed back.
- to_xml() str #
Converts a message to an XML string.
Codeblock#
A codeblock in a message, possibly executable by tools.
LogManager#
Holds the current conversation as a list of messages, saves and loads the conversation to and from files, supports branching, etc.
- class gptme.logmanager.ConversationMeta#
Metadata about a conversation.
- __init__(name: str, path: str, created: float, modified: float, messages: int, branches: int) None #
- format(metadata=False) str #
Format conversation metadata for display.
- class gptme.logmanager.Log#
Log(messages: list[gptme.message.Message] = <factory>)
- __init__(messages: list[~gptme.message.Message] = <factory>) None #
- class gptme.logmanager.LogManager#
Manages a conversation log.
- __init__(log: list[Message] | None = None, logdir: str | Path | None = None, branch: str | None = None, lock: bool = True)#
- branch(name: str) None #
Switches to a branch.
- diff(branch: str) str | None #
Prints the diff between the current branch and another branch.
- fork(name: str) None #
Copy the conversation folder to a new name.
- classmethod load(logdir: str | Path, initial_msgs: list[Message] | None = None, branch: str = 'main', create: bool = False, lock: bool = True, **kwargs) LogManager #
Loads a conversation log.
- rename(name: str, keep_date=False) None #
Rename the conversation. Renames the folder containing the conversation and its branches.
If keep_date is True, we will keep the date part of conversation folder name (“2021-08-01-some-name”) If you want to keep the old log, use fork()
- to_dict(branches=False) dict #
Returns a dict representation of the log.
- undo(n: int = 1, quiet=False) None #
Removes the last message from the log.
- property workspace: Path#
Path to workspace directory (resolves symlink if exists).
- write(branches=True) None #
Writes to the conversation log.
- gptme.logmanager.get_conversations() Generator[ConversationMeta, None, None] #
Returns all conversations, excluding ones used for testing, evals, etc.
- gptme.logmanager.get_user_conversations() Generator[ConversationMeta, None, None] #
Returns all user conversations, excluding ones used for testing, evals, etc.
- gptme.logmanager.list_conversations(limit: int = 20, include_test: bool = False) list[ConversationMeta] #
List conversations with a limit.
- Parameters:
limit – Maximum number of conversations to return
include_test – Whether to include test conversations
prompts#
See Prompts for more information.
tools#
Supporting classes and functions for creating and using tools.
- class gptme.tools.Parameter#
A wrapper for function parameters to convert them to JSON schema.
- __init__(name: str, type: str, description: str | None = None, enum: list[Any] | None = None, required: bool = False) None #
- class gptme.tools.ToolSpec#
Tool specification. Defines a tool that can be used by the agent.
- Parameters:
name – The name of the tool.
desc – A description of the tool.
instructions – Instructions on how to use the tool.
instructions_format – Per tool format instructions when needed.
examples – Example usage of the tool.
functions – Functions registered in the IPython REPL.
init – An optional function that is called when the tool is first loaded.
execute – An optional function that is called when the tool executes a block.
block_types – A list of block types that the tool will execute.
available – Whether the tool is available for use.
parameters – Descriptor of parameters use by this tool.
load_priority – Influence the loading order of this tool. The higher the later.
disabled_by_default – Whether this tool should be disabled by default.
- __init__(name: str, desc: str, instructions: str = '', instructions_format: dict[str, str] = <factory>, examples: str | ~collections.abc.Callable[[str], str] = '', functions: list[~collections.abc.Callable] | None = None, init: ~collections.abc.Callable[[], ~gptme.tools.base.ToolSpec] | None = None, execute: ~gptme.tools.base.ExecuteFuncGen | ~gptme.tools.base.ExecuteFuncMsg | None = None, block_types: list[str] = <factory>, available: bool = True, parameters: list[~gptme.tools.base.Parameter] = <factory>, load_priority: int = 0, disabled_by_default: bool = False) None #
- get_doc(doc: str | None = None) str #
Returns an updated docstring with examples.
- class gptme.tools.ToolUse#
ToolUse(tool: str, args: list[str] | None, content: str | None, kwargs: dict[str, str] | None = None, call_id: str | None = None, start: int | None = None)
- __init__(tool: str, args: list[str] | None, content: str | None, kwargs: dict[str, str] | None = None, call_id: str | None = None, start: int | None = None) None #
server#
See Server for more information.
Server for gptme.
- gptme.server.create_app(cors_origin: str | None = None) Flask #
Create the Flask app.
- Parameters:
cors_origin – CORS origin to allow. Use ‘*’ to allow all origins.